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FOREWORD

This work was undertaken in response to a general need within the thermal
battery industry to find a substitute for the critical and strategic material
phlogopite mica used as high temperature electrical insulation in thermal
batteries. Possible substitute materials were studied by actual
configurational tests in batteries and by thermogravimetry (TG).
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CHAPTER 1

INTRODUCTION

Phlogopite mica is a complex naturally-occurring hydrous aluminum
silicate mineral that is used as electrical insulation in thermal batteries.
The idealized formula for phlogopite is K2Mg6A12Si6020 (OH)4 but several o1 her
elements may be incorporated into the structure as isotopic replacements.
The United States is lmost completely dependent on foreign sources for
strategic sheet mica.' The Government has thus classified it as a critical
and strategic material and must therefore maintain a stockpile for use in
emergencies.

The objective of the present work was to perform an experimental
evaluation to identify and support the development of a substitute material
for phlogopite mica in thermal batteries. Candidate materials must be thin
(0.003-0.010 in) and flexible to wrap around the cell stack and must maintain
good electrical resistance and thermal stability at thermal battery operating
temperatures (500 0-550 0 C). Chemically, the material must be resistant to
molten salts, strong oxidizing and reducing agents, and should be non-
hygroscopic.

Candidate materials were studied by thermogravimetry (TG) to determine
the decomposition temperature and mass loss of each sample. The materials
were also subjected to actual configurational tests in thermal batteries
employing the LiAl/LiCl-KCI,SiO 2/FeS 2 molten salt electrochemical system.

ISkow, M. L., U. S. Bureau of Mines Information Circular 8125,
"Mica, A Materials Survey," (1962).

2Petkof, B., U. S. Bureau of Mines Bulletin 630, "Mica" in
Mineral Facts and Problems, 1965 edition, p. 583-94.
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CHAPTER 2

EXPERIMENTAL

THERMOGRAVIMETRY (TG)

A DuPont 1090 Thermal Analysis System with a 951 Thermogravimetric
Analyzer was employed in this study. In preliminary tests to study the
decomposition behavior of phlogopite mica and various candidate replacement
materials, samples were run in platinum boats at a heating rate of 200C/min
under a flowing atmosphere of dry argon to a maximum temperature of 11500 C.

In all subsequent runs, the TG heating program was modified to simulate the
actual temperature vs. time profile experienced by internal thermal battery
components, i.e., a maximum average temperature of 500°C-5500C for periods up
to 30 minutes. The sample was either heated at 100°C/min to about 5000C and
then isothermally for about 30 minutes or was inserted into a preheated
furnace at 5000C for 30 minutes. The candidate replacement materials for
phlogopite mica evaluated in this study are listed in Table 1.

BATTERY TESTS

Batteries w,.>e constructed and discharged to compare the electrical
properties of the various candidate insulating materials. The electrical
noise level and life of the battery were used to evaluate the thermal
stability and electrical insulating capability of the materials. In addition,
post mortem analyses were performed to assess the degradation of the
insulators. The details of construction of a typical battery are shown in
Figure 1.

3/4
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CHAPTER 3

RESULTS AND DISCUSSION

A TG curve of phlogopite mica is shown in Figure 2. The excellent high
temperature stability of this material is seen up to about 10000C, above which
it slowly loses water. In Figure 3, a curve of muscovite mica is shown.
Although it does not possess the same stability as phlogopite, muscovite does
remain stable until about 8000C where it, too, begins to evolve water. A
curve of a sample of KAPTON, a DuPont Solyimide film, is shown in Figure 4.
KAPTON starts decomposing at about 525 C, which is in the temperature range of
thermal battery operation.

After these initial TG experiments on phlogopite and muscovite mica and
on KAPTON and several other possible substitute materials, the TG heating
programs were modified to simulate an actual thermal battery temperature vs.
time profile as closely as possible. In Figures 5 through 21, the sample was
heated atlOO°C/min to about 5000C and then isothermally for a total of about
30 minutes. At this high heating rate, the furnace would "overshoot" the
5000C limit, thus heating the sample to about 530°C-5500 C. This overshoot
could have been eliminated by a simple adjustment of the furnace proportional
band control. However, the overshoot was considered a good simulation of a
thermal battery temperature profile and was therefore retained as part of the
heating program. Instead of programming the TGA to simulate the temperature
decrease during an actual discharge as the battery slowly cools, the sample
was held isothermally at about 500°C; thus, these samples remained at high
temperatures longer than they would in an actual battery. In Figures 22
through 28, some samples were rerun by a slightly different method, whereby
they were inserted for 30 minutes into a preheated 500°C furnace to achieve a
faster rate of sample temperature increase. For samples run by both heating
programs, the results were virtually identical although a slightly greater
weight loss usually occurred in the program with the overshoot because of the
higher temperature achieved and the slightly longer time at the 5000C
temperature during isothermal operation. The solid curve is a plot of sample
weight remaining vs. time; the dashed curve is a plot of sample temperature
vs. time. The time to reach maximum temperature, the temperature during the
isothermal heating mode, and the mass remaining after 30 minutes are printed
on the curves. The TG results are summarized in Table 2. Discharge results
of batteries constructed with several of the insulating materials are
summarized in Figures 29 through 37 wherein battery potential and temperature
(TC #1) are plotted versus discharge time. All of the batteries, except for
the one with the NOMEX 418 insulator, performed comparably to the phlogoplte
mica battery, to a 24V cutoff, during this short discharge period.

5/6

- -



NSWC TR 83-410

CHAPTER 4

CONCLUSIONS

Of all the materials tested as possible replacements for phlogopite mica
as electrical insulators in thermal batteries, only muscovite mica has
comparable high temperature stability and electrical properties. Although its
decomposition temperature is about 2000C below that of phlogopite mica (8000C
vs 10000 C), this is still much higher than the average temperature inside a
thermal battery during normal discharge. The discharge behavior of the
batteries constructed with muscovite mica insulation was identical to that of
the phlogopite mica batteries.

As seen in the TG curves, the other candidate insulators all begin
decomposing at or below thermal battery operating temperatures. Post mortem
analyses of these insulators from discharged batteries showed various stages
of degradation. However, most of these batteries performed as well as the
standard phlogopite mica batteries. Most of the degradation is a consequence
of the insulators' contact with the high temperature cell stack for a long
period after termination of the discharge as the battery slowly cools. Thus,
it appears that several of the insulators could be used in short life thermal
batteries (2-3 minutes). For longer life thermal batteries (10-30 minutes),
actual configurational tests would be required to assess the insulators'
capabilities. A summary of the results and recommendations for the eighteen
high-temperature insulating materials included in this study is given in Table
3.

We are presently working on alternative methods to achieve electrical
insulation of the cell stack in thermal batteries. One possible method is to
use a high temperature inorganic polymer coating on the inside of the can;
another is to use an anodized aluminum can, instead of mica, as electrical
insulation.

7/8
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THERMOCOUPLES (D TERMINALS

14=4 ISOMICA

_ -ASBESTOS W/MATCH

CENTER HOLE WITH - OUTER CASE
FUSE STRIP MADE I
OF HEAT PAPER i[ 8 CELLS

OUTER INSULATION
(FIBERFRAX)

I INNER CASE

QUINARGO
INNER

LEADMICA OR INSULATION
SU BSTITUTE

ASBESTOS

MICA - ,.iCELL COVER

THERMOCOUPLt-.-U_. ANODE
2 LAYER PELLET E/C
HEAT

OUTPUT CELL COVERTERMINALS

- THERMOCOUPLES OUTPUTS
(EPOXY SEALING)

NOTES:
1. FIRST THERMOCOUPLE PLACED BETWEEN THE ANODE AND THE TWO LAYER PELLET OF THE

9TH CELL (FROM TOP OF STACK).
2. SECOND THERMOCOUPLE IS BETWEEN THE MICA AND QUINARGO INSULATION OF THE

INNER CASE.
3. THIRD THERMOCOUPLE IS BETWEEN THE FIBERFRAX INSULATION OF THE OUTER CASE AND

THE OUTSIDE OF THE INNER CASE.
4. THE FOURTH THERMOCOUPLE IS ON THE OUTSIDE OF THE OUTER CASE.
5. ALL THERMOCOUPLES ARE APPROXIMATELY AT THE SAME LEVEL.

(APPROX. MIDWAY DOWN THE STACK)

FIGURE 1. CONSTRUCTION OF TEST BATTERIES SHOWING POSITION
OF THERMOCOUPLES
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TABLE 2. THERMOGRAVIMETRY RESULTS

THICKNESS TG* TG**
INSULATOR (mi S) WEIGHT LOSS % WEIGHT LOSS

PHLOGOPITE MICA 4 0.01

MUSCOVITE MICA 4 0.15

KAPTON 300 V 3 3.93 3.37

KAPTON 300 H 3 4.69 3.39

KAPTON 500 H 5 5.63 4.01

KAPTON 300 F 3 17.90

ESSEX P/N 11827 9 12.36 12.09

ESSEX P/N 11054 10 21.27 21.46

ESSEX 470005 5 2.55 2.30

NOMEX 410 5 22.56

NOMEX 418 10 33.46

CHR SILICONE VITON 1606 6 20.33

SILTEMP TAPE 20 14.04

QUINTERRA T3 4 11.91

QUINORGO 5000 5 10.74

Ce QUIN I 5 24.84

QUIN-T 3.25

FUEL CELL PAPER 10 3.30

*Fgures 5 through 21
Figures 22 through 28
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TABLE 3. SUMMARY OF RESULTS AND RECOMMENDATIONS

THICKNESS SUITABILITY FOR
INSULATOR (mils) THERMAL BATTERY USE

PHLOGOPITE MICA 4 EXCELLENT THERMAL STABILITY. SUITABLE
MUSCOVITE MICA FOR USE TO 10000C. GOOD THERMAL STABILITY

RECOMMENDED FOR USE TO 800 0C

KAPTON 300 V 3 PARTIAL DECOMPOSITION AT 5000C. SOME
KAPTON 300 H 3 SHRINKAGE AND DEFORMATION IN BATTERY
KAPTON 500 H 5 TESTS. RECOMMENDED ONLY WHEN BATTERY

DISCHARGE LIFE IS LESS THAN THREE MINUTES.

KAPTON 300 F 3 TEFLON COATING REACTS WITH LITHIUM ANODE.
NOT RECOMMENDED.

ESSEX P/N 11827 9 EXCESSIVE THERMAL DECOMPOSITION AT 5000C
ESSEX P/N 11054 10 RESULTING IN POOR ELECTRICAL INSULATION
ESSEX P/N 470005 PROPERTIES. NOT RECOMMENDED.
NOMEX 410 5
NOMEX 418 10
CHR SILICONE VITON 1606 6
SILTEMP TAPE 20

QUINTERRA T3 4 WETTED BY MOLTEN SALT ELECTROLYTE
QUINORGO 5000 5 RESULTING IN POOR ELECTRICAL INSULATION
Ce QUIN I 5 PROPERTIES. NOT RECOMMENDED.
QUINT-T
FUEL CELL PAPER 10
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